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Abstract

We propose a formal definition of backtestable statistic: a backtest is
a null expected value involving only the statistic and its random variable,
strictly monotonic in the former. We discuss the relationship with elic-
itability and identifiability which turn out being necessary conditions. The
variance and the Expected Shortfall are not backtestable for this reason.
We discuss (absolute) model validation in the context of one— or two—sided
hypothesis tests, as well as (relative) model selection obtained by ranking
realizations of the backtest statistic. We introduce the concept of sharp-
ness which refers to whether a backtest is strictly monotonic with respect
to the real value of the statistic and not only to its prediction. This decides
whether the expected value of a backtest determines the extent of a pre-
diction discrepancy and not only its likelihood. We show that the quantile
backtest is not sharp and in fact provides no information whatsoever on
the real value of the statistic. The Expectile is also not sharp; we provide
bounds for its real value, which are looser for outer confidence levels. We
then introduce ridge backtests, applicable to particular non-backtestable
statistics, such as the variance and the Expected Shortfall, which coincide
with the attained minimum of the scoring function of another elicitable
auxiliary statistic. This allows to produce sharp backtest procedures in
which the prediction for the auxiliary variable is also involved but with
small sensitivity and known bias sign. The ridge mechanism explains why
the variance has always been de—facto backtestable and allows for similar
efficient ways to backtest the expected shortfall. We discuss the relevance
of this result in the current debate of financial regulation (banking and
insurance), where Value at Risk and Expected Shortfall are adopted as
regulatory risk measures.
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1 Motivation and objectives

Backtest procedures for testing predictions of a statistic are common in the sta-
tistical and probabilistic disciplines, notably in the field of financial risk manage-
ment. Backtesting in general, however, remains to date a collection of disparate
practices in the wait for a clear definition. Whether or not a statistic is back-
testable, whether or not a methodology is a backtest, remain vague questions,
prone to controversy.

1.1 Understanding backtestability

In this paper, we address the problem of formalizing the concept of backtestable
statistic and backtesting procedure. We will try to distill the key features that
make it possible to perform the common backtests of statistics such as the mean,
the quantile and the variance. The inference of these features however is not so
straightforward, because even finding what these simple cases have in common
requires some care. For instance, we will see that the quantile is completely
atypical in that it does not require the issuance of a predictive distribution; and
the variance is not even backtestable, strictly speaking. It’s probably because of
subtleties like these that the concept of backtestability still awaits formalization
after decades of industry practices.

Backtesting a statistic (a risk measure, for instance), is not so straightfor-
ward as it may seem. When you make a sequence of bets, say, through a season
of horse races, you can easily check if your predictions were right or wrong sim-
ply because the winning horse is publicly declared at the end of any race. But if
you make a prediction y on a statistic y (say the variance, o) of a distribution
F of future events (say portfolio profit/losses X ), neither the distribution F nor
the true value of the statistic y(F') are publicly announced at the end of the
day. What is revealed is just a single random draw x from an unknowable real
world distribution F'. The tricky point is here: how to compare a prediction
of a statistic y against a single outcome of its random variable X? When this
is possible it’s because there exists a test function Z(y,z) depending only on
these observable quantities — prediction y of the statistic and realization x of
the random variable — whose expected value somehow reveals if predictions are
over /underestimated. For a given statistic, however, the existence of such a test
function is not granted a priori: as a matter of fact, many statistics are not
backtestable.

1.1.1 Quantile: the prototype of all backtests. Or maybe not

A common example of a backtesting procedure is provided by the quantile.
Suppose that a prediction y; is issued for a quantile q, with confidence level
a € (0,1). If the prediction were correct, the realization z; should be lower than
y; with probability! equal to a. Over multiple predictions at different times ¢,
the expected number of quantile “shootouts” z; < y; should be a fraction «

1Let’s assume for the moment that F is continuous



Figure 1: Testing bets on a horse race is easy, because the winner is publicly
announced.
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Figure 2: Testing predictions on a statistic is harder, because the true statistic
will never be revealed. What is revealed is just one random draw.



of all predictions. A lower (bigger) number of shootouts would signal that the
model tends to underestimate (overestimate) the quantile. The procedure has
been adopted within Basel regulation for capital adequacy, for backtesting a
bank’s Value at Risk (VaR = —q) model, for over two decades [3, 4].

At the heart of this procedure, lies the fact that for quantiles there exists a
test function Zg, (y,2) = (¢ < y) —a such that Ep[Zq, (v, X)] E Oify E o (F).

The sign of the realized test function zq = (1/7) Z;‘ll Zq., (yt, 1) over succes-
sive predictions y;, is used to detect the tendency to under- or over- estimations.
We will take the existence of such a function as the definition of backtestability
for a given statistic, with some additional requirements and distinctions.

Remark 1.1. The case of quantile backtest, although prototypical in some sense,
is very special in some others. In the case of an exact prediction, the test
variable Zg is distributed along a Bernoulli distribution of parameter o and
zero mean and therefore Zg follows a binomial distribution B(T,a), with zero
mean, independently of the predictive model. For this reason, computing the p—
value for a realization of Zq in the null hypothesis that the predictions are correct,
requires only generation and storage of the point predictions y; but not of the
predictive distributions P;. We will see that in the case of all other backtestable
statistics the distribution of Zq under the predictive model is model-dependent,
requiring the storage of the predictive distributions P; to compute p—values.

Another peculiar feature of the quantile backtest is the discontinuity of the
test function, which requires smoothness conditions on the distribution functions
involved.

1.2 Backtesting in the financial regulation debate

Although the scope of the paper is more general, the initial motivation for the
present publication comes from financial risk management.

The question over whether the Expected Shortfall (ES) [2, 13] can be back-
tested or not has been the subject of a lively debate over the past years, since it
was found that this risk measure doesn’t possess a property called elicitability
[8]. Part of the controversy stems from the fact that in the absence of a for-
mal definition of backtestability, its precise connection with elicitability remains
unclear.

The subject is paramount in the current regulatory debate. In 2013, the
Basel Committee of Banking Supervision (BCBS), after a proposal exposed to
public consultation, took the decision [6] of replacing Value at Risk (VaR) with
ES for capital adequacy internal models. The decision is now part of the final
rules of Basel 4 [4] that banks are currently implementing,.

A similar debate was the subject of a public consultation [9] from the Inter-
national Association of Insurance Supervisors on Insurance Capital Standards
in December 2014; the result of the consultation was in this case exactly the
opposite, with TAIS finally opting for the adoption of VaR in the Capital Stan-
dard [10]. Among the motivations for this choice was the absence of a backtest
for ES.



ES has a number of advantages over VaR, among which its ability to detect
tail risks, respecting basic rules of risk diversification and convexity. But when
it comes to financial regulation, backtestability — whatever it exactly means —
is not a negotiable property. The term backtesting, as commonly intended in
the risk industry, refers to the practice of validating ex—ante model predictions
of some statistic against observed ex—post realizations of the random variable
it refers to. It’s the only way for verifying if a risk model makes acceptable
predictions or not, a reality check for its output. Banks have been following
backtesting practices for decades, because VaR — despite all its deficiencies —
lends itself to straightforward backtesting. If it were ascertained that ES cannot
be backtested in any possible way, related risk models could not be validated,
and for instance the BCBS should seriously reconsider their decision.

Currently, Basel regulation imposes banks to compute the capital charge for
their internal models based on ES but in absence of a valid backtest for this
measure, requires the models to be validated based on a traditional VaR. back-
test. Whether and how ES can be backtested has become an urgent question.

1.3 Structure of the paper and main findings

In section 2 we define the notation and the experiment setting and we review
the established concepts of elicitation and identification, which will get us very
close to a proper definition of backtestability. In section 2.2.1 we discuss how
elicitability serves to the purpose of conducting relative non—directional tests of
goodness between competing models issuing point predictions on a statistic.

In section 3 we pose the central definition of backtestability, corresponding
to strictly y—increasing identification and y—convex elicitation. Non—elicitable
statistics, such as the variance and the expected shortfall, are not backtestable.
We show that convexity forces the scoring and backtest functions of the mean
and the quantile to be essentially unique (Corollaries 3.6 and 3.7). In section
3.1.1 we propose relative model tests for point predictions based on backtesta-
bility, similar to the ones based on elicitability. The proposed tests are however
directional, namely able to detect under— and over— estimations. Section 3.1.2
describes the full blown hypothesis backtesting procedure that allows for abso-
lute validation of a model issuing entire predictive distributions.

In section 3.2 we notice that only some backtests (such as the mean backtest)
are monotonic also with respect to the real value of the statistic. We call them
sharp because their expected value singles out one value for the real statistic,
providing information on both the likelihood and the magnitude of a prediction
discrepancy. Other backtests provide limited information on the value of the
statistic, in the form of a possible range. We show (proposition 3.15) that the
quantile backtest tells basically nothing on the position of the real statistic.
Expectiles are not sharp either, unless a = 1/2 and we provide bounds for the
location of the real value (proposition 3.18).

In section 4 we show that some non-backtestable statistics admit what we
call a ridge backtest. This is a test involving also predictions of a second,
elicitable, auxiliary statistic, to which the test displays only limited and one—



sided sensitivity. Such mechanism allows for effective backtests when the bias
side happens to be prudential for the purpose of the ridge backtest (proposition
4.2). The variance and the tail mean (or expected shortfall) are shown to admit
a ridge backtest. The result opens the way for effective backtests of the expected
shortfall.

2 Preliminary concepts

In this section we describe the setup, set the notation and briefly review a
number of concepts and results in the related literature.

2.1 Backtest experiment setup

Let X € R be a random variable distributed along an unknowable real-world
distribution function F. Let y be a statistic of X, which we will alternatively
denote as y(F'), y(X) or simply y, case by case, depending on the emphasis.
y may be real-valued or interval-valued as in the case of quantiles (see section
Ad).

We will consider a discrete sequence of times ¢t = 0,1,...,T and random
variables X; observed at every ¢ > 0. Let F; denote the distribution of X,
conditional to the information available at time ¢ — 1. We will assume that at
any time ¢t — 1, a forecast y; for the statistic y is issued by some model, as in
the point forecast setting adopted in [8]. Sometimes we will assume however
that an entire forecast distribution P; for the random variable X; is issued by
the model, and used to generate the prediction y; = y(P;). We will abstract
completely from the nature of the model, which can be any sort of algorithm,
procedure, divination or guesswork.

To pave the ground for a definition of backtestability, we first review some
useful concepts.

2.2 Elicitability

An established instrument for the evaluation of point forecasts is the notion of
elicitability [8].

Definition 2.1. A statistic y is called F—elicitable?, if there exists a scoring
function Sy(y,z) such that the statistic can be expressed as the minimizer of
the expectation

y(F) = arg myinEF [Sy (v, X)], VEF € F (1)

20ur definition of elicitability corresponds to strict elicitability in [8]. We are not interested
in the non-strict case.



An interpretation of this definition is that the expected scoring function plays
the role of a penalty function for possible forecasts y of the statistic in the sense
that it is minimized in expectation by a perfect forecast y = y(F).

We are primarily interested in the case when the class of distribution func-
tions F is mazimal, in the sense that it contains all distributions F' for which
both the statistic y(F') and an expected scoring function Er[Sy| are finite. In
this case, we will omit to denote F and simply speak of elicitable statistics.

Common examples of elicitable statistics include
e The mean pu(F) = Er[X] which is the minimizer of the expected squared
error and therefore has scoring function

Su(y, =) = (y — x)°

e The median — the 1/2-quantile q;/5(F) — which is the minimizer of the
expected absolute error and therefore has scoring function

S(h/Q (y,x) = |y - LL"

e More generally any a—quantile, for a € (0,1), (see A.1) is elicited by a
scoring function

Sa. (y,7) = a(z —y)y + (1 —a)(z —y)-

a well known fact in quantile regression. Equation (55) anticipates this
fact, and can be easily shown to be based on essentially the same scoring
function as the above.

e Expectiles e, (F) [12, 7] (see A.3) are elicitable with scoring function

Sen(y,2) = alz —y)t + (1 —a)(z —y)>

Expectiles represent a remarkable example because for o < 1/2 the as-
sociated risk measure (of opposite sign) was proven to be [14] the only
elicitable statistic which is also a coherent measure in the sense of [5].

Remarkable examples of non—elicitable statistics include the tail mean TM
[8] but also the popular variance a2 of a distribution [11].

When the scoring function of a statistic exists, it is not unique. For exam-
ple, it is immediate to check that a scoring function Sy (y,z) is defined up to
inessential transformations

Sy(y,x) = aSy(y,x) + h(z) (2)

where a > 0 and h any function. Less obvious alternative scoring functions
for the same statistic however exist. For instance [8] reports the most general
expression for the scoring function of the quantile

Sao(y,2) = ((y > ) — ) (9(y) — g(z)) g nondecreasing (3)



Yy Sy (yv I) Fs

m (y—x)? maximal
di/2 ly — z maximal
da a(z—y)+ + (1 —a)(z —y)— | maximal
[ oz — y)2+ + (1 —a)(z—y)2 | maximal

Table 1: Common examples of canonical scoring functions

and for the mean

Su(y.z) = ¢(z) = d(y) — &' (y)(z — v) ¢ convex (4)

A natural notion of simplest possible, “canonical” scoring function, however,
seems to emerge, at least for the most common cases, defined up to inessential
transformations only. Importantly, canonical scoring functions respect dimen-
sional analysis rules, when z and y are not dimensionless, which is a crucial
property for applications in finance, whereas other more general scoring func-
tions typically do not. Interestingly, we will see (Corollary 3.6) that for the
quantile and the mean, only the canonical cases are convex in the prediction
variable y, a fact that will turn out to be crucial for backtestability.

It is immediate to notice [8] that elicitability is robust with respect to strictly
monotonic transformations ¢ : R — R, in the sense that if y is elicitable, then
also y, = g(y) is elicitable with Sy (y,2) = Sy(¢7*(y),®). In particular, a
statistic is elicitable if and only if its opposite is elicitable, so that we can
equivalently speak of the elicitablity of the quantile q or of VaR = —q, for
instance. Similarly, we can equivalently speak of the non—elicitability of the
variance o2 and the standard deviation o.

2.2.1 Model selection via scoring functions

The importance of elicitability stems from the fact that it allows to say some-
thing about predictions of a statistic based only on realizations of the random
variable, which is exactly the problem we posed ourselves in section 1. If a
statistic is elicitable, the realized mean score,

T

Sy = %Zsy(yt;xt) (5)

t=1

measured over a sequence of forecasts y; for the statistic y(X) and realizations
x; of the random variable X can be used to set up a contest of relative quality
between different models labeled by k issuing sequences of forecasts y,fk). The
idea is that the smaller the mean score §§,k), the better the model k.

The big advantage of this type of test is that it doesn’t require an entire
predictive probability distribution P; for issuing the predictions y; = y(P;); the
numbers y; are all what is needed, and the forecast model can be of whatever
type.



Notice however that if there is a single model, the mean score will tell nothing
on the quality of its predictions in absolute terms. For this reason, as we pointed
out in [1], this type of procedure allows for model selection among multiple
models rather than model validation which needs an absolute scale for testing
even a single model, and is the goal of a proper backtesting procedure.

We also notice that a realized mean score test is not directional, in the sense
that it will not reveal whether a model under- or overestimates the statistic.
So you may end up preferring a model that underestimates a risk measure
over another one that overestimates it by more, which may not be what you
want if your goal is of prudential type. In the context of model validation for
prudential financial regulation, it is clearly important to look for directional
validation methods, which is what a backtesting procedure should provide.

2.3 Identifiability
A close concept to elicitability is identifiability.

Definition 2.2. A statistic y is called F—identifiable3, if there exists an iden-
tification function I, (y,x) such that

Er [Iy(y,X)] =0, iff yey(F), VFeF (6)

In most common cases, identifiability and elicitability occur jointly, when equa-
tion (6) represents the first—order stationarity condition of a scoring function

Swa) = [ " 1t @)t (7)

whose expected value Eg[S(y, X)] has a global minimum in y € y(F). Tables 1
and 2 summarize some (canonical) scoring and identification functions for the
analyzed examples, all of which are related by eq. (7). Canonical identifica-
tion functions (and backtest functions in the following) are defined up to an
overall multiplicative constant; for convenience we conventionally set the sign
of identification functions in accordance to (7), namely such that the function
is increasing around y = y(F).

Similarly to elicitability, we will simply speak of identifiability, without spec-
ifying F, when the class is maximal, namely it contains all distribution functions
for which y(F) and Ep[ly] are finite. Equation (7) implies that the maximal
class for identifiability includes the maximal class for elicitability.

Also identifiability (and later backtestability) is robust with respect to strictly
monotonic transformations g : R — R, in the sense that if y is identifiable, then
also y, = g(y) is identifiable with Iy (y,2) = Iy (97 (y), ).

Remark 2.3. As opposed to all other examples in table 1, the quantile (and the
median as a special case) is not identifiable under a maximal class F of distri-
butions via the proposed (canonical) function, but requires further continuity

3Strictly identifiable in most literature.



Yy IY(y7 :E) ]:I

i7s y—x maximal
ai/2 (y>z) = (y<z)+clz=y) F(x) cont. in qy/3
da l-a)y>z)—aly<z)+clz=y) F(x) cont. in qq
ea l-a)(z—y)- —alz—y)+ maximal

Table 2: Common examples of canonical identification functions. See remark
2.4.

conditions on F'(x), at least in = q,,. To illustrate the point let F'(z) be discon-
tinuous in x = q, € R. We will have F(q,) < F(ql) and F(q;) < a < F(q}).
We can immediately check that the expected value of the identification function
for a correct prediction y = qq

Epllq.(da, X)) = —a(1 = F(qg)) + (1 — @) F(q,)

is in general different from zero. The problem is intrinsic to the discontinuity
of the map y — I4(y,x) and is common to any other identification function of
the quantile derived from the most general scoring function [8].

Remark 2.4. The identification function of quantile in table 2 (and the backtest
function in table 3) is defined up to a term concentrated in (x = y). The most
general form is

1. 2) = (1= a)(y > ) —aly <) +c(r=y) (8)

for any choice of ¢ € [-a, 1 — a]. For instance, the popular choices Icllgo‘(y7 x) =
(r <y)—aand I %(y, ) = (z < y) — « are obtained by setting ¢ = 1 — o and
¢ = —q« respectively.

The range for ¢ comes from the fact that

Er[lg, (v, X)] = F(y) —dPr[X =y| —a = Fy(y) —a (9)

with d = 1 — a — ¢. We need to require that Fy(y) = F(y) — dPr[X = y] €
[F(y~), F(y") = F(y)], otherwise there can be solutions to Er[I§ (y,X)] = 0
different from y = q,,. This forces d € [0, 1] and therefore ¢ € [—a, 1 —«]. Notice
that this restriction makes (8) nondecreasing in y.

3 Backtesting: definitions, methods and prop-
erties
We now have the elements for attempting a definition of backtestability. For a

reason that will be clear from remark 3.3, we consider in this section statistics
y that are single—valued and we adopt the correspondingly simpler notation.

10



3.1 Backtestability

We define backtestability in such a way to be able to rank predictions on a scale
where positive (negative) values denote over— (under—) estimation and worse
predictions rank further from zero. This will allow us also to set up a meaningful
hypothesis test for the correctness of a model prediction in probabilistic terms.

Definition 3.1. We define a statistic y to be F-backtestable, if there exists a
backtest function Zy(y,x) such that

Er [Zy(y, X)] =0, iff y=y(F), VE e F (10)
which is strictly increasing in the prediction y, VF € F.

Er [Zy(y1,X)] <Er [Zy(y2, X)] if 11 <y (11)

The requirement is very natural: posing this definition, the sign of Ep [Zy (y, X)]
will coincide with the sign of the prediction discrepancy y — y(F)

Er[Zy(y, X)) >0 if y>y(F)
and given two predictions that both overestimate (or underestimate) the statis-
tics, the worse prediction will generate a strictly worse (i.e. more distant from
zero) expected backtest function

{ IEF [Zy(ylaX)] < EF [Z)’(y%X)} <0 if Y1 <y2 < Y(F) (13)
Ep [Zy(y1, X)] > Ep [Zy(y2, X)] >0 if g1 >y2 > y(F)

Backtestability is slightly more restrictive than identifiability in that it re-
quires the expected value of the identification function to be strictly increasing
in the prediction variable y. For this, it is necessary that the identification
function be nondecreasing in y for all z and it is sufficient that it be strictly
increasing.

The canonical identification functions of p and e, are strictly increasing in
y, and therefore constitute valid backtest functions on the same distribution
class F of identifiability, which is maximal.

The identification function (8) of the quantile q,, is nondecreasing for any c,
but not strictly increasing. We therefore need to check under what distribution
functions we obtain strict monotonicity of the expected identification function
under y. From (9), remembering that F(y~) < Fy(y) < F(y"), we can imme-
diately conclude that for the expectation to be strictly increasing in y we need
to restrict to distribution functions that are overall strictly increasing®. We can
conclude that

4We call strictly increasing a distribution function when it is strictly increasing except
where it takes values 0 or 1.

11



Yy Zy(y7 .I) -FZ
i7s y—x maximal
d1/2 y>z)—(y<z)+clx=y) F(z) cont. in q; /5 and str. incr.
da l-a)y>z)—aly<z)+clxz=y) F(z) cont. in g and str. incr.
eq l1-—a)(z—y)- —alz—y)+ maximal

Table 3: Common examples of canonical backtest functions. In the case of the
mean and of the quantile, these are also the only possible backtest functions (see
corollary 3.7). We conjecture that also the backtest function of the expectile is
unique.

Proposition 3.2. The quantile q, is backtestable only on the class
F = {F| overall strictly monotonic; continuous in qq} (14)

The scope of a quantile backtest will typically be the smaller class of distri-
butions which are overall both continuous and strictly monotonic.

Remark 3.3. Given that the quantile is backtestable only on strictly increasing
distributions on which the quantile is single—valued, we restrict throughout this
section to statistics y which are single—valued. We don’t have other interesting
examples of interval-valued backtestable statistics.

In all the examples shown in table 2, the identification functions are non-
decreasing in y and as we have shown represent also valid backtest functions
although in the case of the quantile on a smaller class of distributions. We
summarize the results in table 3. In fact we don’t know a single example of
identifiable statistic which is not also backtestable on some class of distribu-
tions, although we can’t exclude this possibility.

There exist, on the other hand, identification functions which are not back-
test functions as the below proposition shows.

Proposition 3.4. In the family of identification functions of the quantile®

Iq.(y,2) = g'(y)((y > 2) — ) g increasing (15)

derived from the most general scoring function (8), the only one which is non-
decreasing in y for all x, is the canonical one obtained with g(x) = z, up to a
positive constant.

Proof: We need to impose that

Wld' W ((y>2z)—a)]=g"(W)((y > ) —a) +¢'(y)d(x —y) (16)

be > 0 for all y and x. But whatever the sign of ¢”(y), we know that the term
((y > ) — ) is both positive and negative depending on x and y. The only

5For simplicity we fix ¢ = 1 — o in the general expression (8). The choice is irrelevant for
the result.

12



possibility for the above expression for being always positive is therefore that
¢”(y) = 0, which imposes g(z) = . O

An identical result holds for the scoring function of the mean.

Proposition 3.5. In the family of identification functions of the mean

Lu(y,z) = ¢"(y)(y — @) ¢ convex (17)

derived from the most general scoring function (4), the only one which is non-
decreasing in y for all x, is the canonical one obtained with ¢(x) = 22, up to a
positive constant.

Proof: We need to impose that

Ol (y)(y — )] = 6" (Y)(y — x) + ¢" (y) (18)

be > 0. We know that ¢’ > 0. But if ¢"’(y) # 0 at some y, there exists some
x for which the above expression goes negative. Therefore ¢"'(y) = 0. But

given that ¢(z) = x makes (17) vanish altogether, the only possible solution is
o(x) = 2. O

Corollary 3.6. Up to inessential transformations, the only scoring functions
for the mean and the quantile that are y—convex are the ones listed in table 1.

Corollary 3.7. Up to a positive constant, the only backtest functions of the
mean and the quantile are the canonical functions listed in table 3.

It is immediate to show that backtestability implies elicitability.

Proposition 3.8. Ify is F-backtestable with backtest function Zy(y,x), then
it 1s also F'—elicitable with y—convex scoring function

Sy(y,z) = /1/ Zy(t,x)dt (19)

on the class F' of distributions F' for which Sy (y, X) is integrable.

Proof: y — Ep[Zy(y, X)] strictly increasing ensures that y — Er[Sy (y, X)]
is convex and has a global minimum in y € y(F). g

The above proposition tells us that convexity of the scoring function is a
necessary condition for backtestability. And that the backtest function is the
y—subdifferential of the scoring function®.

Elicitability with a strictly y—convex and smooth scoring function, implies
backtestability. If the smoothness condition is not met, like in the case of the
quantile, restrictions on F may be necessary to ensure backtestablity.

61t is interesting to notice that the condition on c in remark 2.4, although derived from dif-
ferent requirements, corresponds exactly to the subdifferential range in the non differentiable
point of the scoring function of the quantile.

13



Proposition 3.9. Ify is F-elicitable with scoring function Sy (y,x) which is
strictly convex and continuously differentiable iny, then it is also F'—backtestable
with F' 2 F and with backtest function

ZY(yam) = aySY(yvx) (20)

Proof: straightforward. O

3.1.1 Model selection via backtest function

In analogy with section 2.2.1, one can use a realized mean backtest function for
performing a selection among models that compete on a sequence of predictions
of y, based on realizations X; = xy

1 I
=7 ZZy(ytv-Tt) (21)

t=1

Also this test, like the one based on (5) is relative and not absolute. However,
the test is directional. A positive (negative) realized value is a sign of over-
estimation (resp. underestimation) of the true statistic. The test provides a
natural preference criterion (the closer to zero the better) between models that
both over— (or under—) estimate. On the other hand, a further criterion has to
be supplemented for choosing between models that display opposite tendencies.

3.1.2 Model validation: proper backtesting procedure

To obtain a proper model validation of absolute type, we need” to consider the
case in which the statistic prediction y; = y(FP;) is formulated via an entire
predictive distribution function P;. We can then exploit (12) which becomes

Er [Zy(y(P), X)] SEp[Zy(y(P), X)| =0 if y(P)sy(F)  (22)

to test whether the prediction y(P) over/underestimates the real value y(F).
A standard hypothesis test can be set up, checking the compatibility between
the model distribution Pz of the mean backtest function

T
- 1
Zy = E Zy(ytaXt); Xt ~ Pt (23)
t=1

=l

and its realization Zy, eq. (21). As usual, a preliminary significance level n < 1
(such as n = 95%), will have to be set, which determines in turn a rejection
region of P-measure 1 — n for Z,. This will span one or both tails of the
distribution, depending on whether the test is one— or two—sided.

“Quantile will represent an exception, as it does not require resampling of the predictive
backtest distribution.
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Let’s consider for instance a one—sided test on a risk measure y intended to
check if the model is prudential enough. The null hypothesis is that the model
issues predictions that do not underestimate the risk measure:

Hy:y(P) > y(F) Ve=1,...,T

The rejection region will span the left tail of the distribution: z, € (—o0,¢y),
where ¢, = PZ_1(1 —n).

In the absence of analytical results, one needs to simulate the model distri-
bution Pz of the random variable Zy, generating a suitably large number M of
scenarios

simulate independent X} ~ P, Vt=1,...,T,Vi=1,...,.M
compute test scenarios zy = % Z;‘ll Zy(y(P), X}) Vi=1,...,.M
o . . _M(1—n):M —i:M
The critical threshold will be estimated by ¢, = Zy , where zg™ denotes

as usual the sample’s order statistics. Finally, the null hypothesis will be rejected
if z, < ¢y
Remark 3.10. The case of quantile backtesting (like the standard VaR backtest
in Basel regulation) is exceptional in the sense that the distribution Py is bi-
nomial, independently of the model, and for this reason requires no montecarlo
resampling. Implementation of the backtest is therefore much more straight-
forward, in particular for what concerns data storage. To backtest a quantile
it is sufficient to record, for every ¢, the numerical prediction y; and the real-
ization x;, whereas for other statistics, it is necessary to record also the entire
probability distribution P, for resampling purposes.

However, from a conceptual point of view, the standard quantile backtest
based on the counting of “exceedances” (i.e. on Zg, (y,z) = (z < y) — a),
follows exactly the same logic as the above test of hypothesis.

Remark 3.11. We may be tempted to use a scoring function instead of a backtest
function for a similar bootstrap procedure, to create some type of two—sided
test. By simulating a model distribution Pg_ for the realized mean score, we
may believe that the realization under a different real distribution F' should
have a larger expected value, unless the prediction is correct. This argument is
however flawed, because it assumes the following property to hold, in analogy
with (22).

Ep[Sy(y(P),X)] > Ep[Sy(y(P),X)], VP, FeFs, falsein general (24)

The problem is that this property does not hold for a (and probably for any)
scoring function.

As a counterexample, let’s consider the scoring function S, in table 1. We
can easily compute

Ep[Su(n(P), X)] = o*(F) + (u(F) — pu(P))?



and realize that the difference between these two expressions has a positive
contribution coming from a wrong prediction of p but also a contribution given
by the difference between the two variances. The difference can therefore be
negative as soon as o?(F) < 0%(P) — (u(F) — p(P))? when this last expression
is larger than zero.

3.2 Sharpness

Backtestability requires the expectation of the backtest function to be strictly
monotonic with respect to the prediction variable: worse predictions rank worse,
given a real distribution. We can however reverse the logic and ask ourselves:
is the opposite true? Is a given prediction ranking worse if the real value of the
statistic is closer than if it is farther? The question is legitimate: we would like
our validation system to send louder warnings for larger discrepancies. If that
weren’t the case, for instance, a traffic light indicator for ongoing risk model
validation could turn from yellow to red over time when in fact the prediction
power is improving and not worsening. Or viceversa, from red to yellow when
it is worsening and not improving.
And yet, natural as it sounds, the requirement,

Er [Zy(y, X) > Ep, [Zy (y, X)] iff y(F1) <y(F2), Yy (25)

namely that the expected backtest function be strictly decreasing with respect
to the true value of the statistics, is not implied by the definition of backtest
function, and in fact fails to hold in the notable cases of quantiles and expec-
tiles. We therefore add to backtestability the above requirement and pose the
following

Definition 3.12. We define the backtest Z (y, z) of a F-backtestable statistic
y to be sharp if it is strictly decreasing in the value y(F') of the statistic, in the
sense that

Er, [Zy(y, X)] > Er, [Zy(y, X)] iff y(F1) <y(Fp); VF1,F> € F,Vy (26)

Condition (26) implies in particular that Ep, (Z,(y, X)) = Ep, (Z,(y, X)) if
y(F1) = y(F>) which means that Er(Z,(y, X)) is a function of y(F') only, and
not of all F. An equivalent definition is therefore

Definition 3.13. We define the backtest Z (y,z) of F—backtestable statistic
y to be sharp, if for all F' € F, the expectation

Er [Zy(y, X)] = ¥(y, y(F)) (27)

is a function ¢ : R? — R of the prediction y and of the statistic value y(F),
which is strictly increasing in the former and strictly decreasing in the latter.
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The importance of sharp backtests (and the reason why we call them sharp)
is understood by noting that for any value z of the expected value (27) there’s
one and only one compatible value

y(F) ="' (y,2) (28)

of the real statistic, where by 1 ~! we denote the inverse function of the second
argument of ¥. This is a fundamental point: a sharp backtest will quantify the
discrepancy of a prediction and not only test whether or not the real value is
compatible with the model as a generic backtest does.

The point has been overlooked for long time in the case of VaR backtesting
for banking regulation. A bank model is withdrawn the regulator’s approval if
it repeatedly ranks red in a traffic light system even if, as we will see, this could
be caused by very small discrepancies between prediction and real value. And
more worryingly, the traffic light could be yellow or even green even when the
underestimation is huge. As a matter of fact, the color of the traffic light, in the
case of VaR tells absolutely nothing about the real VaR value, as proposition
3.15 will show. Sharp backtests, on the contrary, measure both the likelihood
and the extent of a wrong prediction.

It is immediate to check that the backtest of the mean p is sharp. As a
matter of fact, it is obvious that all statistics that are explicitly defined as an
expectation or strictly increasing functions thereof, have a sharp backtest.

Proposition 3.14. Let g,h : R — R, g strictly monotonic and let

y(F) = g(Er[h(X)])

. Then y is F-backtestable on maximal F, with sharp backtest function

Zy(y,x) =vg ' (y) —vh(z) (29)
where v € {1} is the sign of ¢'.

Proof: obvious. O

3.2.1 Information content of the Quantile and Expectile backtests

We will show that both the backtests of the quantile and the expectile are not
sharp. It is therefore interesting to study how informative a backtest of these
statistic is in the localization of the real value.

Let’s begin by analyzing the quantile, recalling that its backtest function is
unique, up to a positive multiplicative constant and the choice of ¢ in (8).

Proposition 3.15. The backtest of the quantile q, is not sharp on its F—
backtestability class (14).
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For any prediction y and expected value z = Ep[Zq, (v, X)] of the backtest
function, the possible range of qo(F') is given by

{ qa(F) € (—oo,y) Zf z>0 (30)
Aa(F) € (y,+00) if 2<0

Proof: For the proof we fix ¢ = 1 — a in (8). It is easy to see that the
choice is completely inessential. If ' € F then z = F(y) — . If 2> 0, 3F € F
such that F~1(a) = y — € as well as F~!(a) = —M, for arbitrarily small € > 0
and large M > 0. If z < 0, 3F € F such that F~!(a) = y + € as well as
F~!(a) = +M. This proves the range conditions on q, = F~!(a).

Then Zg,, is not sharp because the above would contradict (28). O

The result of the above proposition is quite dramatic. In plain English it
means that you have no clue whatsoever on the location of the real quantile
based on the result of a backtest, even if you knew the exact expected backtest
function. It can be anywhere. Also notice that to enforce the missing property
(26), we should restrict to a class F’ such that

Er [Zq, (Y, X)] = ER, [Zq, (y, X)] = Fi(y) — F2(y) >0

when qq(F1) < qo(F2), for all Fy, F; € F' and for all y. But this means
Fy <qst Fy in the sense of first stochastic dominance. Therefore the only classes
on which the backtest of the quantile can be made sharp are totally ordered by
first stochastic dominance. No class of this type makes any sense for practical
application purposes, so that in practical terms we can affirm that the quantile
backtest is not sharp at all.

The only information content of the backtest of the quantile, is restricted to
saying whether the real value is above or below the prediction.

Remark 3.16. One may confuse the result of proposition 3.15 with the elemen-
tary fact that a quantile is blind to the magnitude of the risks in the tail, in the
sense that the position of the quantile doesn’t tell you anything on how severe
the further tail events are. The above result has nothing to with this. The
backtest of the quantile tells nothing on the position of the quantile which in
turn would tell nothing on the position of the risks of the tail. We are speaking
in other words of a (new) problem on top of another (well known) one.

We now consider the expectile. We pose the following

Conjecture 3.17. Also for the expectile, as for the quantile, the backtest func-
tion is unique (table 3) up to a positive multiplicative constant

Proposition 3.18. The backtest of the expectile e, is not sharp on its mazrimal
F-backtestability class unless o = 1/2.
For any prediction y and expected value z = Ep[Ze,_ (y, X)] of the backtest
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function, the possible range of e, (F) is given by

e(F)e(y—z/a,y—z/(1—a)] if 2>0 and a<1/2
e.(F)e(y—z2/1—a),y—2z/a] if 2<0 and a<1/2
e(F)ely—z/(1—a),y—z/a) if z>0 and a>1/2 (31)
eo(F)ely—z/a,y—z/(1—a)) if 2<0 and a>1/2
e.(F)=y—2z if a=1/2

Proof: If F € F then the map t — h(t) = Ep[Z._ (¢, X)] can be shown to

be strictly increasing and convex (concave) for o < 1/2 (resp. a > 1/2) with
first derivative h/(t) = a + (1 — 2a) F(t) and asymptotes

h(t) ~ a(t — Ep[X]) it t— —oo
h(t) ~ (1 —a)(t —Ep[X]) if t— +oo

Let us prove (31) for z > 0 and a < 1/2. It is convenient to plot the function
on the plane (¢, h(t)). The expectile is the value ¢ that solves h(t) = 0. From
h(y) = z > 0 and the fact that the minimum and maximum slopes of the
function h are a and 1 — «, we conclude that e, € [y — z/a,y — z/(1 — a)]. But
given that z > 0, the point (¢, h(t)) = (eq,0) can be on the right asymptote,
but not on the left. Therefore, the right extreme of the interval can be attained,
but the left one can not.
A distribution family that spans all the range is given by

Fx<t>=x(t2y— >+(1—X)(t2y) e (0.1

2
x(1-a)
One can easily prove that Ex, [Ze, (y, X)] = 2z and

z

oF)=y— ———
ealF) =y X +a—2xa

€(y—z/ay—z/(1-a)
The three other cases in (31) can be proven in analogous way.

Then Z_ is not sharp for a # 1/2 because the above would contradict (28).
O

Notice that the discrete nature of the distributions used in the proof is
inessential, apart from the attained extreme of the interval. Smoothing the
jumps of the distribution with arbitrarily peaked gaussians would still span
ealF) € (y— 2/ary — 2/(1 - a)).

The result is clear. The expectile has a sharp backtest on F if and only if
a = 1/2, where it coincides with the mean of the distribution. For a # 1/2, the
real expectile is bounded in a range which is smaller and smaller as o approaches
1/2. The information content of the backtest in other words decreases when the
statistic is used as an extreme tail statistic. In the limits  — 0,1 the range
size diverges.

Interestingly, from the proof we learn that A’(t) oc F'(¢) so that h(t) x ft F.
So, similarly to the quantile case, to impose the expectile backtest to be sharp
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Figure 3: Risk management on a sharp ridge

we should restrict to distributions Fi, F5 such that Vy
Yy
Br, [Ze, (0. X)) - Er, (Ze, (0 X)) x [ (Fy = F2) >0

whenever ey (F1) < eq(F»), which means that we should restrict to classes of
distributions which are totally ordered by second order stochastic dominance
F} <4na Fy; as in the case of the quantile, this is again an inconceivable condition
for any practical application. We can say with no hesitation that the expectile
admits no sharp backtest altogether, unless o = 1/2.

We conclude the section noticing that the backtest of the expectile is sharper
than the one of the quantile, but less and less so for the values of o which are
most interesting for risk management purposes. It is important to recall that
this uncertainty in the position of the real statistic is there also in the absence of
statistical errors, namely assuming the perfect knowledge of the expected value
of the backtest function. Adding to this the inevitable statistical errors that
the estimation of the expected value brings along, raises serious questions as
to whether the non—sharp backtest of a statistic should be relied upon for risk
management purposes at all.

4 Ridge backtests

We have learned that the first thing to look at, in order to see whether a
statistic y is backtestable or not is the existence of an expression of the type
E[I,(y(X), X)] = 0, namely a null expectation which involves only the statistic
itself and the random variable X. This is the most intuitive way for understand-
ing whether or not a statistic is in turn elicitable, identifiable, backtestable. If
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the definition of the statistic doesn’t immediately lend itself to a representation
of this type, the statistic is probably not elicitable to begin with, although a
formal proof may be nontrivial.

Variables like the variance o2 and the tail mean TM (or the expected short-
fall ES = —TM) have been proven to be not elicitable [11, 8] and therefore
are not backtestable. This should not sound surprising. A null expectation
involving the variance, for instance, exists, following directly from its definition

Erplo?(F) — (X = u(F))’] =0 (32)

but it irreducibly involves also another statistic, the mean p. Similarly, the tail
mean satisfies (53) from which it is immediate to obtain a null expectation,

1
Er TMu(F)_Qa(F)+a(X_Qa(F))— =0 (33)
Also this expression, however, involves another statistic, the quantile q.

In general, when there exists a condition like

ElI(y2(X),y1(X), X)] =0 (34)

involving two statistics y; and ys, a single backtest may tell very little on the
prediction quality of either statistic, because deviations from zero expectation
may be driven by discrepancies in both predictions. One may try to perform
a preliminary backtest on say y1, if it is separately backtestable, and then use
the joint relationship to backtest ys, conditionally to y; being correct. This
is essentially the strategy we adopted in [1], with the backtests Z; and Zs for
y2 = ES, in the assumption that the prediction for y; = VaR had previously
been tested. This strategy, however, poses two serious problems. First of all,
what if the prediction of y; turned out to be not correct? What is the sensitivity
of the backtest for y, to this discrepancy? But secondly, and more importantly:
how can one ascertain at all that the prediction for y; is spot on, given that via
hypothesis testing we can at most rule out large discrepancies, and only up to
some significance level?

It is clear from these arguments that a useful backtest methodology for
y2 based on a condition of type (34) can be obtained only if some model-
independent mechanism ensures small sensitivity on predictions to y;. Inci-
dentally, this is exactly the case of the variance and the tail mean. These two
statistics are very special in that they are the attained minimum (up to a sign
for TM) of the scoring function of a partner variable, p and q respectively.

We pose the following

Definition 4.1. We say that a statistic y» admits a ridge F-backtest

Zy,(y2,y1,%) = h(y2) — v Sy, (Y1, 7) (35)

if it can be expressed (up to a strictly monotonic function g : R — R) as
the minimum of the expected F—scoring function Sy, of an elicitable auziliary
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statistic y

y2(F) = g (min, Er[Sy, (3. X)])
{ y1(F) = argmin, Er[Sy, (y, X)] Fer (36)

In (35), v € {£1} is the sign of ¢’, and we denote h(x) = v g~ 1(y).
The utility of this definition is explained by the following

Proposition 4.2. Let Zy, be a ridge F-backtest for yo with auxiliary statistic
y1 as in definition 4.1. Then

e the expected backtest is zero in the correct predictions for ys and yi

EF[ZYQ(YQ(F)aY1(F)aX)] =0 VF eF (37)

o 7y, acts as a backtest for yo with a one-sided bias depending only on
in the sense that

ErlZy,(y2, 41, X)| = (h(y2)=h(y2(F)))—v Ep[Sy, (y1, X) =Sy, (y1(F), X)]

(38)
so that
Er[Zy, (Y2, y1, X)] < (h(y2) — h(y2(F))) if v >0
{EF[Zyz(yz,yl,X)]z(h(yQ)h(yQ(F))) it y<o T (39

o If Ep[Sy, (y1,X)] is continuously differentiable in y1 = y1(F) for F €
F' C F, then

Er[Zy, (y2,y1, X)] = (h(y2) — M(y2(F))) + O(y1 — y1(F))? (40)

o Zy, is sharp for ys up to terms O(y1 — y1(F))?

Proof: Eq. (38) follows directly from the definition (35), noting that (36)
implies y2(F) = g(Er[Sy, (y1(F),X)]). Eq. (39) follows from (38) and the
second equality in (36). Eq. (37) follows from (38).

If Er[Sy, (y1,X)] is continuously differentiable in the minimum y; = y1(F'),
it is at least quadratic. This shows (40) which in turn proves the last assertion.

U

The above proposition contains some important facts. When you climb
the ridge of a mountain, if you lose your way on either side of the edge, you
can be sure of one thing: that you’ll find yourself below where you should be.
Similarly, a ridge backtest for a statistic y2 has a one—sided dependence only on
the prediction y; of the auxiliary statistic y;. This allows to draw conclusions
at least in one direction.

Suppose to fix the ideas that ¥ > 0. And imagine that we want to test
against underestimations of y5. These will imply a negative expected backtest

Er(Zy,(y2,y1, X)] <0 if yo <ya(F), (41)
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irrespective of the prediction y;. An imperfect prediction y; will make the
result even more negative, or in other words, will make the test a bit more
prudential. Very importantly, the magnitude of this bias will be small around
a correct prediction y; = y1 (F') where it attains the minimum. Under smooth
conditions, the sensitivity to y; will be zero at first order.

With these observations in mind, a ridge backtest can be adopted both for
model selection (section 3.1.1) and for model validation (section 3.1.2).

Examples of statistics admitting a ridge backtest can be obtained given any
scoring function Sy, (even non y—convex) and any strictly monotonic function
g. Convexity of Sy, plays no role in the ridge backtest mechanism.

4.1 Variance

The variance admits a ridge backtest. It is well known that

o (F) = minEr[(X — y)*) = min B[S, (y, X)) (42)
where S}, is the canonical scoring function of the mean in table 1. The variance
therefore admits a ridge F—-backtest on the maximal class where it is integrable,
with g(z) = z, v = +1. Its backtest function is given by

Zo2(v,m,z) = v — (x —m)? (43)

The sensitivity to predictions m of the mean is quadratic around m = p(F)
because S, (y, x) is continuously differentiable in y.

The existence of a ridge backtest explains the apparent paradox that despite
the variance is not elicitable (hence not backtestable), it’s never been difficult
to perform effective backtests, under even rudimental predictions for the mean,
such as m = 0. Estimation errors in the mean affect the backtest very mildly
and only in the direction of penalizing possible underestimations of the variance.

As a simple example of robustness of backtestability under strictly monotonic
transformations of the statistic, we notice that the standard deviation o also
admits a ridge backtest

Zy(s,m,x) = s* — (x — m)? (44)

as per definition 4.1 with g(z) = /z.

4.2 Tail Mean / Expected Shortfall

Let’s consider the case of TM = —ES. For simplicity let’s consider the expected
shortfall, which also has g(x) = z, v = +1. To show that ES admits a ridge
backtest, we recall from (55) that

BS,, = min, {~q+ XE[(X ~q) ]}

(45)
Qo = argming {—¢ + LE[(X — ¢)_]}
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To show that S;_ (y,2) = —y + (1/a)(z — y)_ is a scoring function for qq
we notice that it coincides with the scoring function Sq, in table 1 up to the
inessential transformation:

Seu (U, @) = Sq. (y,7)/a — (46)

The corresponding backtest function (which is defined up to a positive constant)
for predictions e of ES, can be written as

Zgs.(e,¢;x) =ale+q) - (x—q)-=ale+q) +(x—q)(z—q<0) (47)
If we express this in terms of predictions v for VaR,, = —q, we have
Zws, (e,v,z) =ale —v)+ (x +v)(z+v <0) (48)

where the name of the variables should prevent possible confusion between these
last two expressions. This shows that ES admits a ridge F—backtest on all
distributions F' € F where it exists.

The scoring function of the quantile is however not continuously differen-
tiable. The sensitivity to ¢ (or v) of the backtest is zero at first order only
requiring the same conditions under which the quantile is identifiable, namely
that the distribution F' be continuous in q,(F) = —VaR(F).

We observe that the ridge backtest (48) is very similar to test Zs proposed
in [1], which can be written as

Zy(e,v,x) = ae+x(r+v <0) (49)

This expression, was derived from (54) in the “simplifying” assumption of con-
tinuous distributions under which it satisfies E[Z2(ES, VaR, X )] = 0. In reality,
this test suffers from significant linear sensitivity on the VaR prediction v, as
it fails to reflect the mechanism of the ridge backtest for ES. The sensitivity is
there even for continuous distributions, which may appear surprising. Backtest
(48) has to be preferred in any circumstance over test (49).

Example 4.3. To illustrate this point, we consider the following experiment:
let F = N(0,1) be a real distribution and let P, = N(u,,02) be a family
of predictive distributions which forecast ES, = 5% exactly (e = ES,(P,) =
ES,(F)) but yield varying predictions v = VaR, (P, ) around VaR,, (F). Figure
4 plots the behavior of the mean over T' = 250 days of the two tests in a
backtesting procedure (as in section 3.1.2) meant to exclude underestimations
up to significance level n = 95%.

From the plot, we see that Z, displays significant linear sensitivity to v,
possibly leading to model rejection (a type I error) also for relatively small
underestimations v < VaR(F). Test Zggs on the other end displays much
lower sensitivity in v, in fact zero at first order, and is affected only in the
prudential direction. Rejection can still occur, but only for huge estimation
errors of VaR,,.

Let now instead consider predictions chosen in such a way that they all
underestimate the expected shortfall ES,(P,) = ES,(F) — 1. Figure 5 shows
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that the linear sensitivity of Zs this time can be responsible for the failure to
reject a wrong model (type II error), something that will never happen with
ZEs given that its bias sign is prudential.

Remark 4.4 (Ridge backtest and banking regulation). The fact that the ES ad-
mits a ridge backtest is relevant for model validation purposes in the financial
industry, notably the banking regulation debate discussed in section 1.2. The
ES has long been considered non—backtestable, and rightly so, strictly speak-
ing, as our definition of backtestability confirms. We now know, however, that
it admits a backtest which is biased in a prudential way and negligibly so unless
VaR is grossly misspecified. And up to this bias, the backtest is sharp, namely
provides information on the magnitude and not only the likelihood of a predic-
tion discrepancy, as opposed to a traditional VaR backtest. The adoption of a
ridge backtest for ES makes a lot of sense: if VaR is not grossly misspecified by
the model, the backtest is sharp. If VaR were to be completely misspecified, ei-
ther way, even a correct prediction of ES would be suspicious, because it would
come from a predicted tail of wrong shape. The bias, in other words, could be
welcome as a penalty for models that predict ES correctly only by pure luck.

Speaking of luck, it’s worth observing that in a ridge backtest, the direction
of the bias (the sign of v) is built in with the statistic, and cannot be chosen at
will. Despite Murphy’s law, in the case of ES, the toast did not land butter—
side down. It’s only for a fortunate coincidence that the bias turns out to be
prudential for tests meant to exclude underestimations of ES. If for whatever
reason someone wanted to test for overestimations of ES there would be no
ridge backtest that serves the purpose with a prudential bias.

5 Conclusions

A clear definition of backtestability of a statistic was in demand, after decades
of practices. If there’s one feature that deserves this name, is the existence of
an expectation involving only the statistic prediction and the random variable
(the only two quantities that are observable in an experiment), which is strictly
monotonic in the prediction and zero when it’s correct (for detecting under— and
overestimations and ranking prediction accuracy). This is what enables model
selection based on the statistic point predictions and hypothesis backtesting
based on entire predictive distributions.

Not all backtests, however, are also strictly increasing in the real value of
the statistic, for a fixed prediction. We call this property sharpness because the
expected value of such a backtest determines exactly the real value of the statis-
tic, providing information also on the extent of a wrong prediction. Sharpness is
a natural requirement if we want louder warnings for worse discrepancies. Non
sharp backtests (quantile, expectile) provide limited if any information at all on
the possible real values of the statistic.

Some statistics (variance, Expected Shortfall), despite being not backtestable,
admit a null expectation involving another auxiliary statistics (resp. the mean,
Value at Risk), which is extremal in the latter. The corresponding backtest
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(ridge backtest) has limited sensitivity in the prediction of the auxiliary vari-
able and known bias sign. This is the mechanism that has always allowed for
effective tests of variance predictions without caring much if the predictions of
the mean were accurate.

We show that the same mechanism allows for effective ways to backtest the
Expected Shortfall. For a fortunate circumstance, the modest bias to Value
at Risk predictions has always prudential direction when it comes to detecting
underestimations of the Expected Shortfall, the natural use case for a risk mea-
sure. This backtest is also sharp, as opposed to the backtest of Value at Risk
which is completely blind to the magnitude of prediction errors. This result is
relevant for banking regulatory standards, which now adopt Expected Shortfall
as a risk measure for capital adequacy, but are still based on backtests of Value
at Risk.
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A Definitions: quantile, tail mean, expectile

We collect the definitions adopted for the concepts of quantile, tail mean, and
expectile. When changed sign, these statistics are used to define tail risk mea-
sures on a profit—loss distribution, respectively known as Value at Risk, Ex-
pected Shortfall and Expectile Risk.

In this section, X denotes a random variable with distribution function F’
and integrability properties specified case by case. We will denote by « € (0, 1)
a confidence level, typically small.

A.1 Quantile and Value at Risk

Definition A.1 (Quantile). Given ar.v. X € Ly we define the a—quantile as
the interval-valued quantity

Ao (F) = [Ta, 2] (50)
where the lower and upper quantiles are respectively defined by

{ o = inf{z|F(z) > a}

x® = sup{z|F(x) < a} (51)

Qo is a single-valued statistic if and only if the inverse image F'~!(«) is single—
valued or empty.
We define Value at Risk as the opposite of the quantile, VaR, = —qq.

A.2 Tail Mean and Expected Shortfall

Definition A.2 (Tail Mean). Given a random variable® X € L, we define

the tail mean as [2]

1

T™ML(F) = - [ adpa (52)

We define the Expected Shortfall as the opposite of the tail mean, ES, =
—TM,,.
An equivalent useful formulation [2] is given by”

TM.(F) = “Ep{X(X —qu(F) < 0) + au(F)fa — (X — qu(F) < 0)]}
= qulF) ~ Erl(X — au(F)) ] (53)

Notice that when TM, exists, it is always single-valued, even when q, is
interval-valued for some p € [0,«]. Formulae (52) and (53) do not depend

81t is sufficient to require that only the left tail be L.
9We use the standard notation for the positive part (z)+ = max(z,0) = z(z > 0) and
negative part (z)— = —min(z,0) = —z(z < 0) of a number z.
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on the choice of a single value q, in what may possibly be an interval. Also,
(53) remains valid if strict inequalities < are replaced with <. See [2].
We report here also two widely used alternative expressions that hold for

continuous distributions!.

TM, (F) "2 LB {X(X ~ qu(F) < 0)} "2 B {X|X <au(F)} (54

More generally, the equalities hold for all distributions for which Prob{X <
do(F)} = a. For non—continuous distributions, on the contrary, these three
expressions may all be different.

Finally, we recall the classical result of Uryasev and Rockafellar [13, 2] that
shows that eq. (53) can be expressed as an optimization, in which TM,, plays
the role of the attained maximum and q, of the minimizer.

TMa(F) = max, {q — JEr[(X — q)-]}

(55)
Qo (F) = argmax, {q¢ — LEp[(X —¢)_]}

A.3 Expectile

Definition A.3 (Expectile). For X € Ly, the expectile e, (F') is defined as
the solution of [12, 7]

aEp[(X —ea(F))+] = (1 - )Ep[(X —ea(F))-] (56)

In the special case o = 1/2, the expectile coincides with the mean of the distri-
bution.

The corresponding tail risk measure, differing by an overall sign is also called
expectile in most literature, without ambiguity.

10More generally, the equalities hold for all distributions for which Prob{X < qn(F)} = a.
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Figure 4: Dependence on v of tests Zgg and Zs in the case of correct predictions
for ES. Notice the linear sensitivity of the latter and the muted, quadratic
sensitivity of the former. We can see that Z5 can easily generate a type I error.
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Figure 5: Similar example in the case of an underestimation e* = ES, (F) — 1.
Zy can generate a type II error, while Zgg can not.
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