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1 Introduction

The Benson-Zangari approach [1] is a method for Monte Carlo simulation of risk factors that has a number

of practical advantages over standard approaches. In particular, it does not require that the simulated factors

are linearly independent, it does not depend on the ordering of factors, and is computationally simple.

This document describes how Benson-Zangari is used in RiskServer. Section 2 describes the Benson-

Zangari approach. Section 3 discusses different assumptions on the drift associated with risk factors. Section

4 discusses how to apply Benson-Zangari in such a way as to minimize day-to-day variation in Monte Carlo

simulation.1

1This approach is available with RiskServer 5.4 Phase II.
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2 Benson-Zangari

To describe the original algorithm, let f1, . . . , fk be factors (financial returns2) and assume that we have n

historical observations f j(1), . . . , f j(n) of the latter; the indices i = 1, . . . ,n stand for increasing time points,

with f j(n) the most recent observation. We suppose that the historical covariance matrix C is estimated

through EWMA with a decay parameter 0 < λ ≤ 1.

To simulate normal factors with zero mean and covariance C, one first forms a matrix of historical data as

follows:

R =

√
1−λ

1−λ n


f1(n) f2(n) · · · fk(n)

λ 1/2 f1(n−1) λ 1/2 f2(n−1) · · · λ 1/2 fk(n−1)
...

... · · ·
...

λ (n−1)/2 f1(1) λ (n−1)/2 f2(1) · · · λ (n−1)/2 fk(1)

 . (1)

The case λ = 1 corresponds to usual sampling with equal weights, and it can recovered by taking the limit

limλ→1(1−λ )/(1−λ n) = 1/n. It is easy to verify that C = R′R (where a prime in this document denotes

the transpose of a matrix or vector). Indeed,

(R′R)i j =
1−λ

1−λ n

n−1

∑
k=0

λ
k fi(n− k) f j(n− k), (2)

which is the EWMA estimator of the covariance between factors fi and f j.

Let Z = (Z1, . . . ,Zn)
′ be a vector consisting of iid (independent identically distributed) standard normal

random variables. Then

Y = R′Z (3)

yields a vector of k returns such that

E(Y) = 0 (4)

E(YY′) = Cov(Y) = R′Cov(Z)R = R′In×nR = C, (5)

i.e. Y is a simulated vector of returns with desired distributional properties. Summarizing, to create one

joint factor scenario, we

1. Determine the data matrix R,

2. Draw one scenario for the random vector Z,

2In RiskServer the return type depends on the nature of the factor; the default choice for stocks or volatilities is log-return,
i.e. fn = log(pn/pn−1), with p the price or volatility level; for interest rates or spreads is difference return, i.e. fn = rn− rn−1,
with r the interest rate level. The raw returns are demeaned if the demeanReturn input is specified in the valuationSpec, i.e.
fn = log(pn/pn−1)− f̄n, with f̄n = 1/n∑

n
i=1 log(pn/pn−1). The default behavior assumes that raw returns are not demeaned.
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3. Calculate Y by the linear transform (3).

If several independent joint factor scenarios have to be generated, one just draws independent scenarios for

Z and applies the latter algorithm.

The Benson-Zangari algorithm has two great advantages. First, it does not require a Cholesky decomposition

and works well, in contrast to Cholesky, in the case of a singular covariance matrix C.3 Second, computing

a scenario for a certain factor only requires historical data of that factor. The different historical factor

time-series are not mixed since

Yj =
n

∑
i=1

Ri j Zi =

√
1−λ

1−λ n

n

∑
i=1

λ
(i−1)/2 f j(n− i+1)Zi. (6)

For the same reason, the factor scenario does not depend on the ordering in the vector Y. In practice it is

not necessary to store the data matrix R. A scenario for an additional factor is generated by just performing

the calculation (6). Also, caching of factor scenarios is straightforward because earlier generated factor

scenarios do not change when new factors are included, provided that always the same Z-scenario was used

in (6). Note that the dimension of Z depends on the length of the data window only and that it is therefore

not very costly to store Z permanently.

In contrast, the Cholesky method requires to rerun a Cholesky decomposition on the covariance matrix each

time that a new factor is included in the analysis.

3 Understanding Drifts in Risk Server

The distributional properties of the simulated factor returns defined by Eq. (3), embodied in Eqs. (4,5), are

consistent with zero expected returns, and a EWMA estimate of the covariance obtained using n historical

factor returns. The number n depends on the lookback period over which historical returns are defined, the

sampling return horizon, and the overlapping properties of the historical returns, which are inputs controlled

by the user as part of the risk setting portion of the input (the valuationSpec section of the RML input query).

In this document we denote by hs the sampling return horizon, and by ha the analysis horizon corresponding

to the desired forecast period. As a concrete example, we might be interested in forecasting risk over an

analysis horizon of one month (ha = 1M). We might do that by using historical daily returns (hs = 1D), by

using weekly returns (hs = 5D) defined with or without overlap, or returns compounded over a different user

specified return horizon. The simulated returns defined by Eq. (3) correspond to return period defined by hs.

3The matrix will be singular if the number of factors is greater than n, the number of historical observations available. But even
if the matrix is not singular but the number of factors is large, using the Cholesky decomposition can be challenging due to almost
degenerate nature of the resulting matrix: with numerical errors the matrix might well be singular for all practical purposes.
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The choice of whether to incorporate drifts, when simulating factor returns, is left to the user via the specifi-

cation of a drift formula, currently specified in the volatility setting portion of the input (the monteCarloSpec

section of the RML input query). Current available choices are noDrift, noDriftPandL, and inSampleDrift.

Since historical estimates of factor drifts are notoriously noisy, the Risk Server default choice is to use zero

drift (the noDrift case), i.e. to apply Eq. (3) to generate a sample return corresponding to hs. In the more

general case when we have a vector of drifts d and we want E(Y) = d, the equation becomes:

Y = R′Z+d (7)

If the choice inSampleDrift is specified by the user, the k-dimensional vector d is estimated as4

d =
1
n

n

∑
i=1

f(i). (8)

If the analysis horizon and the sampling horizon do not match, the simulated returns corresponding to ha are

derived from Eq. (7) by simple scaling, i.e.

Ya =

√
ha

hs
R′Z+

ha

hs
d (9)

Let’s now focus on some consequences of Eq. (9) in the case of zero drift, i.e. let’s consider what happens

if the user chooses to generate returns with zero drift in Monte Carlo simulation, i.e. if we set d = 0 in

Eq. (9). It is important to realize that, in this case, we are enforcing a zero drift condition on the specific

return defined by the return type associated to the factor f j. If f E represents the log-normal return of an

equity with price level S, i.e. f E(i) = log(Si/Si−1), the equation guarantees that the expected value of the

log-return is zero (E( f E) = 0). This does not however guarantee that the expected value of the P&L (or of

the simple return) of the underlying equity is zero. The reason is that

E(P&L) = E(Si+1−Sn) = SnE(exp( f E)−1) = Sn[exp(σ2
E/2)−1] 6= 0, (10)

where σE is the estimate of the volatility of the equity factor.

Similar considerations apply to rate factors. If f r represents the difference return associated to a zero coupon

rate factor corresponding to tenor T , E( f r) = 0. However, the expected return of the corresponding discount

bond is given by:

E(P&L) = E(DT
n+1−DT

n ) = DT
n E(exp( f r)−1) = DT

n [exp(σ2
r,d/2)−1], (11)

4If the demeanReturn choice is made, raw (i.e. not demeaned) returns are used in Eq. (8).
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where σr,d is the estimate of the volatility of the rate factor; in the case factor returns are defined as

f r(i) = log(Di/Di−1) =−T (ri− ri−1). (12)

Rate factors can also be defined to be of type log-return, i.e. f r
ln(i) = log(ri/ri−1). In this case expectation

of the P&L of the corresponding discount factor is given by

E(P&L) = E(DT
n+1−DT

n ) = DT
n {E(exp[−T (rn+1− rn)])−1}

= DT
n

{
E(exp[− T

rn
(exp( f r

ln(n))−1)])−1
}

≈ DT
n

{
E(exp[− T

rn
f r
ln(n)])−1

}
= DT

n

(
exp[(

T σr,ln

rn
)2/2]−1

)
(13)

where σr,ln is the volatility of the factor and we assume that f r
ln� 1.

The value of σ in the above equations are computed according to the specification (decay factor, sampling

frequency, overlap, and lookback period) specified in the (volatility) risk settings. Following the notation

used above, for asset j:

σ
2
j =

1−λ

1−λ n

n

∑
i=1

λ
(i−1) f 2

j (n− i+1) (14)

The three equations above and their derivation point to what needs to be done to have E(P&L) = 0 in the

case of log-normal price and difference returns rate factors, and E(P&L)≈ 0 in the case of log-normal rate

factors. This can be obtained by selecting the noDriftPandL case, as the value in the driftFormula.

We apply a drift term, identical to the Ito’s drift term commonly used in stochastic calculus, that cancels the

drift caused by the RM definition of the factor. This is achieved by generating Monte Carlo factor returns as

Ya =

√
ha

hs
R′Z+

ha

hs
e (15)

with e j =−σ2
j /2 for any asset j corresponding to log-normal price return or to a difference-return for rates,

and e j = σ2
j /2 for any asset j corresponding to log-normal rate factors.

4 Minimizing Day-to-Day Changes in Monte Carlo VaR

Every Monte Carlo VaR (MCVaR) estimate has an associated random error, because we can only generate

a finite number of simulations. If a new set of random numbers is drawn, the sign and magnitude of this

error can change. This effect can lead to random changes to MCVaR estimates from one day to the next. In
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addition, MCVaR can change due to changing market conditions, which lead to changing risk estimates. In

order to meaningfully compare MCVaR from one day to the next, it is important to minimize the changes

due to random fluctuations. Although this random change would disappear as we add more and more

simulations, this is not practical as pricing in each scenario can be computationally demanding.5

Here we describe an approach to minimizing random changes in MCVaR that involves re-using the same

random draws in a consistent way from one day to the next.6 Recall that the Benson-Zangari procedure

involves multiplying random normal draws with weighted historical returns as in Eq. (3). The way to

stabilize MCVaR is to uniquely associate a given normal draw with a given return date, so that the same

random draw always multiplies the same historical return.

More concretely, consider a simulated risk factor return Yt,k on day t for factor k:

Yt,k = R1,kZ1 +R2,kZ2 + · · ·+Rn,kZn (16)

where the indexing is the same as in Eq. (1). If the random draws Z are used in the same way on the next

day, we have

Yt+1,k = R2,kZ1 +R3,kZ2 + · · ·+Rn+1,kZn (17)

In other words, a different draw multiplies each historical return on day t +1 compared to t.7

Across analysis dates, we associate a given random draw with a given return date as follows. As the estima-

tion window moves forward by a day, one historical return drops out at the beginning, and a new return is

added at the end. As this happens, we re-use the first random draw (associated with the return that drops out,

R1,k) to multiply the new return that has been added (Rn+1,k). This way, the same random draw continues to

multiply all returns that are common to the two MCVaR estimates (R2,k through Rn,k). That is, we replace

Eq. (17) with the following:

Yt+1,k = R2,kZ2 +R3,kZ3 + · · ·+Rn+1,kZ1 (18)

The important point is that for a particular choice of risk settings, draw Zi corresponds to historical return

R j,k regardless of the analysis date; the indexing is arbitrary. This is achieved by indexing all dates in a

particular way depending on the statisticsTerm. Suppose the statisticsTerm is 100 business days. We start

by taking a reference date (set arbitrarily to May 6, 1997), and assigning this date the index i = 1. Then we

move forward, assigning May 7, 1997 the index 2, and so on until we get to 100. Then the indexing loops

back to 1, to cover the entire history.

The effect of this stabilization on a sample linear bond/equity portfolio is illustrated in figure 1. Because

5RiskServer allows a maximum of 5000 simulations.
6This is a new approach that is available with RiskServer 5.4 Phase II.
7This is the approach currently used in RiskServer. Note that although we are re-using the same random draws, they are not

applied in a consistent way. The net effect is as though we were drawing new random numbers on each day.
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this is a linear portfolio (the PV depends linearly on the risk factor levels), the limit of MCVaR as random

error goes to zero is equal to the Parametric VaR. Parametric VaR therefore provides a lower bound on

the day-to-day variation in MCVaR forecasts for linear portfolios, as changes in Parametric VaR are due

purely to changing risk estimates. In figure 2 we compare the variation of daily MCVaR changes in the two

approaches with that of Parametric VaR. We see that the stable simulation approach leads to substantially

lower daily variability. In fact, the effect of stabilization on 1000 simulations is greater than increasing the

number of simulations to 5000 without the stabilization.

Figure 1: Impact of error stabilization (sample bond/equity portfolio, 1000 and 5000 scenarios)

4.1 Using the Stabilization Procedure in RiskServer

The stabilization procedure described above is made available in RiskServer for historical estimation win-

dows (sometimes referred to as lookback periods) that are specified as a fixed time period (e.g. 1 year). In

addition, for the procedure to be effective a fixed number of simulations and consistent historical windows
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Figure 2: Standard deviation of daily VaR changes (sample bond/equity portfolio, October 2007–October
2012)

must be used across different analysis dates. The new methodology does not apply for arbitrary start and

end dates8. In other words, the stabilization will not be effective if on one day a 1 year window is used, and

on the next a 2 year window is used. Similarly, it will not apply if on one day 1000 simulations are used,

and on the next 2000 simulations are used.

Furthermore, it is important to note that the use of multi-day returns along with non-overlapping or partially

overlapping returns leads to another, unrelated source of daily variation. Therefore it is important to use the

stabilization procedure along with maximally overlapping returns, e.g. for 5-day returns, choose 4 days of

overlap.

To enable the new methodology the monteCarloSeedingMethod→stable input should be specified in the val-

uationSpec section of the RML input. If monteCarloSeedingMethod is not specified, the methodology de-

faults to the original methodology; this is equivalent to specifying the monteCarloSeedingMethod→original

input.

8In the RM4 interface the lookback period input is specified under RiskSettings. The stabilization described here applies if
TimeSeriesDates is of type Historical Term. If no selection is made for this input, stabilization applies because the default choice is
one year of trailing lookback period, corresponding to a historical term (or statisticsTerm in a direct RML query) of one year.
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